Diamonds on large cardinals

نویسندگان

  • Alex Hellsten
  • Tapani Hyttinen
  • Saharon Shelah
چکیده

Acknowledgements I want to express my sincere gratitude to my supervisor Professor Jouko Väänänen for supporting me during all these years of getting acquainted with the intriguing field of set theory. I am also grateful to all other members of the Helsinki Logic Group for interesting discussions and guidance. Especially I wish to thank Do-cent Tapani Hyttinen who patiently has worked with all graduate students regardless of whether they study under his supervision or not. Professor Saharon Shelah deserve special thanks for all collaboration and sharing of his insight in the subject. The officially appointed readers Professor Boban Veličkovi´c and Docent Kerkko Luosto have done a careful and minute job in reading the thesis. In effect they have served as referees for the second paper and provided many valuable comments. Finally I direct my warmest gratitude and love to my family to whom I also wish to dedicate this work. My wife Carmela and my daughters Jolanda and Vendela have patiently endured the process and have always stood me by.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 1 70 8 . 02 14 5 v 1 [ m at h . L O ] 7 A ug 2 01 7 JOINT DIAMONDS AND LAVER DIAMONDS

We study the concept of jointness for guessing principles, such as ♦κ and various Laver diamonds. A family of guessing sequences is joint if the elements of any given sequence of targets may be simultaneously guessed by the members of the family. We show that, while equivalent in the case of ♦κ, joint Laver diamonds are nontrivial new objects. We give equiconsistency results for most of the lar...

متن کامل

Topics in Set Theory

Axiomatics. The formal axiomatic system of ordinary set theory (ZFC). Models of set theory. Absoluteness. Simple independence results. Transfinite recursion. Ranks. Reflection principles. Constructibility. [4] Infinitary combinatorics. Cofinality. Stationary sets. Fodor’s lemma. Solovay’s theorem. Cardinal exponentiation. Beth and Gimel functions. Generalized Continuum Hypothesis. Singular Card...

متن کامل

Indescribable cardinals without diamonds

where E is a stationary subset of some cardinal ~. Jensen (cf. I-D2]) showed that if K is regular and uncountable and V=L then O~,E holds. Following his work, a number of applications of this principle and its modifications have been developed which are wide ranging and not restricted to set theory (cf. [-D1]). Jensen had also discovered that various large cardinals carry diamond sequences with...

متن کامل

Souslin Trees Which Are Hard to Specialise

We construct some +-Souslin trees which cannot be specialised by any forcing which preserves cardinals and coonalities. For a regular cardinal we use the principle, for singular we use squares and diamonds.

متن کامل

Large cardinals and the Continuum Hypothesis

This is a survey paper which discusses the impact of large cardinals on provability of the Continuum Hypothesis (CH). It was Gödel who first suggested that perhaps “strong axioms of infinity” (large cardinals) could decide interesting set-theoretical statements independent over ZFC, such as CH. This hope proved largely unfounded for CH – one can show that virtually all large cardinals defined s...

متن کامل

On Iterated Forcing for Successors of Regular Cardinals

We investigate the problem of when ≤ λ–support iterations of < λ–complete notions of forcing preserve λ. We isolate a property — properness over diamonds — that implies λ is preserved and show that this property is preserved by λ–support iterations. Our condition is a relative of that presented in [1]; it is not clear if the two conditions are equivalent. We close with an application of our tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003